

(Formerly known as Atom Testing Laboratory)
Accreditation: NABL(ISO/IEC 17025: 2017)

ANALYTICAL REPORT

ANALYSIS REPORT OF CARBON FILTER WATER QUALITY

. Name of the Customer : NEW MILLENNIUM CONCEPTS, LTD.

dba, Berkey Water Systems

PO Box 201411, Arlington, Texas 76006

2909 E Arkansas Ln Ste C-627, Arlington, Tx 76010

2. Sample Collected by Submitted by Customer

 3. Date of Collection
 : 28.08.2025

 4. Date of Sample Receipt
 : 28.08.2025

 5. Sample Number
 : 2510041A

6. Sample Name : PHOENIX GRAVITY NEW MILLENNIUM

EDITION FILTER ELEMENT

7. Product code PGF9-2 8. Analysis started on 02.09.2025 9. Analysis Completed on 27.09.2025 10. Page No. 1 of 4 11. Report Issued on 28.09.2025 NSF /ANSI 12. **Protocols**

Test Data Summary

Sample Name : PHOENIX GRAVITY NEW MILLENNIUM EDITION FILTER

Product Code : PGF9-2

Batch Number: H02042520

Test Run: Initial

Sample Details: 210mm L X 70mm OD

Flow Rate : 3-5 LPH Analytical and Research Lab LLP

Flushing time:

The system/unit is flushed in accordance with the manufactures instructions using test water. The system is challenged using appropriate influent challenge water.

Instruments used for the testing

- GCMSMS: Gas Chromatography with Mass Spectroscopy for the evaluation of Pesticides Polyromantic hydrocarbons, Polychlorinated biphenyls and Volatile Organic Compounds.
- LCMSMS: Liquid Chromatography Mass Spectroscopy for the evaluation of Pesticides, PFAS AND Liquid chromatography for Pharmaceutical Drugs
- > ICPMS: Inductive Coupled Plasma Mass Spectrometry for Metal and other radioactive elements.

Methods

- As per the Standard guidelines of NSF 42 AND NSF 53
- Test methods followed as per APHA 22ND EDITION
- Test methods followed as per AOAC 20TH EDITION
- Test methods followed as per EPA guidelines.

Page 1 of 4

General February

Authorised Signatory

(Formerly known as Atom Testing Laboratory)
Accreditation: NABL(ISO/IEC 17025: 2017)

ANALYTICAL REPORT

Results

Table 1: - Challenge Water Properties

Parameters	Influent Challenge Water	Target
pН	8.04	7.5 to 9.5
Temperature	24.8°C	25°C ± 2°C

Table 2: - Input Water Properties

TDS	423 mg/L	200-500 mg/L
Turbidity	4 NTU	3 to 5 Nephelometric
TOC	12 mg/L	Turbidity Units 10 to 15 mg/L

Heavy Metals µg/L

Heavy Metals	Input Concentration	Output Concentration	% Reduction
Chromium	200	<1	99.5+
Cobalt	200	<1	99.5+
Molybdenum	200	<1	99.5+
Vanadium	200	<1	
Uranium	200	1	99.5+
10000	200	< 1	99.5+

VOC's µg/I

VOC's	Input Concentration	Output Concentration	% Reduction
1,1-dichloro-2-propane	1000	<1	99.9 +
1,1,1-trichloro-2-propane	1000	<1	99.9 +
1,2,4-trichlorobenzene And	lytical a1000 esean	ch Lab KP	The second secon
Chloroform	assisti1000 u on que	ility <1	99.9 + 99.9 +

Disinfectant and Inorganic Non-Metallic Contaminants mg/I

Disinfectant and Inorganic Non-	Input	Output	% Reduction
Metallic Contaminants	Concentration	Concentration	
Chlorine Residual	2	< 0.01	99.5 +

Disinfection Ryproducts mg/I

Disinfection Byproducts	Input Concentration	Output Concentration	% Reduction
Bromochloroacetonitrile	10	< 0.1	99.0 +
Chloropricin	10	< 0.1	99.0 +
Dibromoacetonitrile	10	< 0.1	99.0 +
Dichloroacetonitrile	10	< 0.1	99.0 +
Haloacetonitrile	10	< 0.1	
Haloketones	10	< 0.1	99.0 +
Tribromoacetic acid	10		99.0 +
Trichloroacetonitrile	10	< 0.1	99.0 +
Trihalomethanes	10	< 0.1 < 0.1	99.0 + 99.0 +

Page 2 of 4

Convai Manager Qua Authorised Signatory

RAYNU / FRM - 23

ANNOUNCE THE ESTATE OF THE PARTY OF

(Formerly known as Atom Testing Laboratory)
Accreditation: NABL(ISO/IEC 17025: 2017)

ANALYTICAL REPORT

Individual Organic Compound mg/L

Organic Compound	Input Concentration	Output Concentration	% Reduction
Methyleyclohexane-methane	2		
v v montene		< 0.01	99.5+

Per - and Polyfluoroalkyl Substances (PFAS) µg/L

PFAS	Input Concentration	Output Concentration	% Reduction
PFNA -perfluorononanoic acid	10	< 0.02	99.8+
PFHxS -perfluorohexane sulfonic acid	10	< 0.02	99.8+
PFHpA -perfluoroheptanoic acid	10	< 0.02	99.8+
PFBS -perfluorobutanesulfonic acid	10	< 0.02	99.8+
PFDA -perfluorodecanoic acid	10	< 0.02	99.8+

Radiologicals µg/L

Radiologicals	Input Concentration	Output Concentration	% Reduction
Cesium	1000	<1	99.9+
Iodine	1000	<1	99.9+
Lead An	alytical ad000esear		99.9+
Nickel	assisti1000u on qui		99.9 +
Strontium	1000	<1	99.9 +
Thorium	1000	<1	99.9 +
		to mar/1	
Oil and Grease	Petroleum Contaminan		
Oil and Grease	10	< 0.1	99.0 +
Mineral Spirits	10 10		99.0 + 99.0 +
Mineral Spirits Gasoline	10 10 10	< 0.1	
Mineral Spirits Gasoline Diesel	10 10 10 10	< 0.1 < 0.1	99.0 +
Mineral Spirits Gasoline	10 10 10	< 0.1 < 0.1 < 0.1	99.0 + 99.0 +

Page 3 of 4

ivekar and Bhat
General Panager Quarty
Authorised Signatory

For Terms & Conditions P .T . O

(Formerly known as Atom Testing Laboratory)
Accreditation: NABL(ISO/IEC 17025: 2017)

ANALYTICAL REPORT

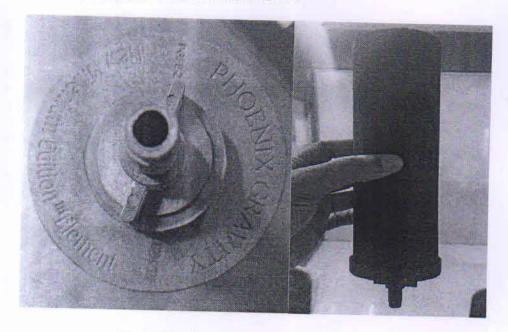


Fig 1: - Candle

Fig 2: - Filtering Unit

Conclusion: The Submitted Filter Candle meets the requirements for the above stated standard NSF 42 and NSF 53 norms at the initial stage of the testing.

Page 4 of 4

General Manager • Quality
Authorised Signatory